Toward novel environmental impact assessment for ANSPs using machine learning

Gabriel Jarry (DSNA), Daniel Delahaye (ENAC)

InterFAB Research Workshop Climate change and the role of air traffic control

Research Workshop Vilnius 23/09/21

What do we want to measure and how ?

- Fuel efficiency
- Noise efficiency

KPI/PI proposal

<u>KPI 1a: ANSP service</u> quality

<u>PI 2a: ANSP lateral</u> structural efficiency

<u>PI 3a: ANSP profiles</u> <u>structural efficiency</u> Ex: en-route, (other phases)

Unconstrained Ideal

<u>KPI 1b: State service</u> <u>quality</u>

<u>PI 2b: State lateral</u> structural efficiency

<u>PI 3b: State profiles</u> <u>structural efficiency</u>

Use case : focus on approach at CDG (100NM)

<u>KPI 1a: 100NM arrival</u> <u>fuel ANSP</u> service quality

<u>PI 2a: 100NM arrival fuel</u> <u>ANSP lateral structural</u> <u>efficiency</u>

<u>PI 3a: 100NM arrival fuel</u> <u>ANSP profiles structural</u> efficiency

Example flight 1 – 26L South-East flow

Example flight 2 – 26L South-East flow

KPI 1a 0.10

Example BP – 26L South-East flow

PI 3a 0.15

PI 2a 0.09

Perspectives

AI model improvements + weather / noise indicators

Large scale ANSP deployment for post-ops analysis (CDG-NICE-ORY-LYO) Real time experimentation with ATC center + safety tools

Research Workshop Vilnius 23/09/21

Perspectives

Research Workshop Vilnius 23/09/21

Thank you for your attention !

gabriel.jarry@aviation-civile.gouv.fr alain.bourgin@aviaiton-civile.gouv.fr DSNA/ME/AMO

Appendix

Modelization

True Air Speed (kts)

Research Workshop Vilnius 23/09/21

<u>Outputs</u>

Fuel flow (kg/h) Aerodynamic configurations (Flaps, Gear)

Fuel model error quantification and model generalization

A320 – evaluation 1000 flights

Phase	$MAPE_{fuel}$ (%)	MAE_{fuel} (kg/h) r_{fuel}	Sanples #	MAPE _{conso} (%)	MAE _{conso} (kg)	ME _{conso} (kg)	Flight #
ALL	5.95	50.5	99.1	7988512	1.73	92.0	1.5	1000
TAXI	11.21	45.5	23.4	3 59704	4.92	3.4	0.4	1000
CLIMB	1.66	38.2	99.2	1. 47940	1.19	20.3	4.0	1000
CRUISE	3.68	44.1	86.7	4 11650	2.8	72.5	-2.8	995
DESCENT	11.17	56.2	96.2	1276614	2.88	10.4	2.0	999
APPROACH	16.9	115.0	86.7	224834	6.51	6.1	0.3	998
		Low	High				Centered	
		MAF	correlat	ion			Frror	
		THE	Correlat				Entor	

B737 – generalization – ICAO Fuel coefficient ratio - 1000 flights

Phase	$MAPE_{fuel}$ (%)	MAE_{fuel} (kg/)	r_{fuel}	Sa	nples #	$MAPE_{conso}$ (%)	MAE _{conso} (kg)	ME _{conso} (kg)	Flight #
ALL	9.59	82.9		96.0	92	86056	2.71	153.7	-52.5	1000
TAXI	22.73	85.4		25.0	3	55444	8.78	6.8	-6.0	1000
CLIMB	4.26	103.0		97.1	1	61423	2.49	38.0	-18.3	1000
CRUISE	4.5	51.1		79.4	5.	02375	3.3	102.6	-32.0	998
DESCENT	15.42	68.8		94.2	1.	05903	4.01	15.5	-0.7	999
APPROACH	17.66	143.8		83.5	1	99789	7.96	7.7	2.0	1000
ÊNĂC		increased		High					Potential	14
		MAE	L	orrelatio	on				Bias	

Summary of the approach

Performance	ANSP	Global		
Reference	Best Performer, Direct	Best Performer, Direct		
Metric	Reference model consumption	Real consumption		
Indicator type	Relative deviation	Absolute deviation		
Phases	Gate-to-gate, departure, en-route, approach	Gate-to-gate, departure, en-route, approach		